skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Han, Tao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. There has been an increasing interest in exploring quantities associated with quantum information at colliders. We perform a detailed analysis describing how to measure the quantum discord in the top anti-top quantum state at the Large Hadron Collider (LHC). While for pure states, quantum discord, entanglement, and Bell nonlocality all probe the same correlations, for mixed states they probe different aspects of quantum correlations. The quantum discord, in particular, is interesting because it aims to encapsulate all correlations between systems that cannot have a classical origin. We employ two complementary approaches for the study of the top anti-top system, namely the decay method and the kinematic method. We highlight subtleties associated with measuring discord for reconstructed quantum states at colliders. Usually quantum discord is difficult to compute due to an extremization that must be performed. We show, however, that for the$$ t\overline{t} $$ t t ¯ system this extremization can be performed analytically and we provide closed-form formulas for the quantum discord. We demonstrate that with current LHC datasets, quantum discord can be observed at 3.6 – 5.7σ, depending on the signal region, with the decay method and can be measured at a precision of 0.1 – 0.2% with the kinematic method. At the high luminosity LHC, the observation of quantum discord is expected to be > 5σusing both the decay and kinematic methods and can be measured with a precision of 5% with the decay method and 0.05% with the kinematic method. Additionally, we identify the kinematic cuts at the LHC to isolate the$$ t\overline{t} $$ t t ¯ state that is separable but has non-zero discord. By systematically investigating quantum discord for the first time through a detailed collider analysis, this work expands the toolkit for quantum information studies in particle physics and lays the groundwork for deeper insights into the quantum properties in high-energy collisions. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. Free, publicly-accessible full text available December 8, 2025
  3. Free, publicly-accessible full text available December 1, 2025
  4. Free, publicly-accessible full text available December 1, 2025
  5. Free, publicly-accessible full text available December 8, 2025
  6. Quantum entanglement is a fundamental property of quantum mechanics. Recently, studies have explored entanglement in the$$ t\overline{t} $$ t t ¯ system at the Large Hadron Collider (LHC) when both the top quark and anti-top quark decay leptonically. Entanglement is detected via correlations between the polarizations of the top and anti-top and these polarizations are measured through the angles of the decay products of the top and anti-top. In this work, we propose searching for evidence of quantum entanglement in the semi-leptonic decay channel where the final state includes one lepton, one neutrino, twob-flavor tagged jets, and two light jets from theWdecay. We find that this channel is both easier to reconstruct and has a larger effective quantity of data than the fully leptonic channel. As a result, the semi-leptonic channel is 60% more sensitive to quantum entanglement and a factor of 3 more sensitive to Bell inequality violation, compared to the leptonic channel. In 139 fb−1(3 ab−1) of data at the LHC (HL-LHC), it should be feasible to measure entanglement at a precision of ≲ 3% (0.7%). Detecting Bell inequality violation, on the other hand, is more challenging. With 300 fb−1(3 ab−1) of integrated luminosity at the LHC Run-3 (HL-LHC), we expect a sensitivity of 1.3σ(4.1σ). In our study, we utilize a realistic parametric fitting procedure to optimally recover the true angular distributions from detector effects. Compared to unfolding this procedure yields more stable results. 
    more » « less
  7. Users on edge generate deep inference requests continuously over time. Mobile/edge devices located near users can undertake the computation of inference locally for users, e.g., the embedded edge device on an autonomous vehicle. Due to limited computing resources on one mobile/edge device, it may be challenging to process the inference requests from users with high throughput. An attractive solution is to (partially) offload the computation to a remote device in the network. In this paper, we examine the existing inference execution solutions across local and remote devices and propose an adaptive scheduler, a BPS scheduler, for continuous deep inference on collaborative edge intelligence. By leveraging data parallel, neurosurgeon, reinforcement learning techniques, BPS can boost the overall inference performance by up to 8.2× over the baseline schedulers. A lightweight compressor, FF, specialized in compressing intermediate output data for neurosurgeon, is proposed and integrated into the BPS scheduler. FF exploits the operating character of convolutional layers and utilizes efficient approximation algorithms. Compared to existing compression methods, FF achieves up to 86.9% lower accuracy loss and up to 83.6% lower latency overhead. 
    more » « less
  8. It has long been recognized that the scattering of electroweak particles at very high energies is dominated by vector boson fusion, which probes the origin of electroweak symmetry breaking and offers a unique window into the ultraviolet regime of the Standard Model (SM). Previous studies assume SM-like couplings and rely on the effective W approximation (or electroweak parton distribution), whose validity is well established within the SM but not yet studied in the presence of anomalous Higgs couplings. In this work, we critically examine the electroweak production of two Higgs bosons in the presence of anomalous V V h and V V h h couplings. We compute the corresponding helicity amplitudes and compare the cross section results in the effective W approximation with the full fixed-order calculation. In particular, we identify two distinct classes of anomalous Higgs couplings, whose effects are not captured by vector boson fusion and effective W approximation. Such very-high-energy electroweak scatterings can be probed at the muon shot, a multi-TeV muon collider upon which we base our study, although similar considerations apply to other high-energy colliders. Published by the American Physical Society2024 
    more » « less
  9. There is a significant interest in testing quantum entanglement and Bell inequality violation in high-energy experiments. Since the analyses in high-energy experiments are performed with events statistically averaged over phase space, the states used to determine observables depend on the choice of coordinates through an event-dependent basis and are thus not genuine quantum states, but rather “fictitious states.” We find that the basis which diagonalizes the spin-spin correlations is optimal for constructing fictitious states to test the violation of Bell’s inequality. This result is applied directly to the bipartite qubit system of a top and antitop produced at a hadron collider. We show that the beam axis is the optimal basis choice near the t t ¯ threshold production for measuring Bell inequality violation, while at high transverse momentum the basis that aligns along the momentum direction of the top is optimal. Published by the American Physical Society2024 
    more » « less